A Fuzzy Adaptive K-SVD Dictionary Algorithm for Face Recogntion

نویسندگان

  • Xiaoning Song
  • Zi Liu
چکیده

Sparse representations using overcomplete dictionaries has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. The K-SVD algorithm is an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. However, the existing K-SVD algorithm is employed to dwell on the concept of a binary class assignment meaning that the multi-classes samples are assigned to the given classes definitely. The work proposed in this paper provides a novel fuzzy adaptive way to adapting dictionaries in order to achieve the fuzzy sparse signal representations, the update of the dictionary columns is combined with an update of the sparse representations by incorporated a new mechanism of fuzzy set, which is called fuzzy K-SVD. Experimental results conducted on the ORL and Yale face databases demonstrate the effectiveness of the proposed method. Keywords-Sparse representation; Fuzzy sets; K-SVD; Image recognition

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A parameterized fuzzy adaptive K-SVD approach for the multi-classes study of pursuit algorithms

Sparse representations using over complete dictionaries has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from a pre-specified set of linear transforms or adapting the dictionary to a set of training signals. The K-SVD algorithm is an itera...

متن کامل

Dual Adaptive K-SVD Algorithm Based on a Rank Symmetrical Relationship

Applications that use sparse representation are many and include compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. The K-SVD algorithm is an iterative method that alternates between sparse coding of the examples based on...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Speech Signal Compressed Sensing Based on K- Svd Adaptive Dictionary

This paper proposes a novel and successful method for speech signal compressed sensing based on KSingular Value Decomposition (K-SVD) algorithm. K-SVD is an iterative method that alternates between sparse representation of the train samples based on the current dictionary and a process of updating the dictionary atoms to better fit the speech data. The presented K-SVD algorithm is applied here ...

متن کامل

A New Approach to Sparse Image Representation Using MMV and K-SVD

This paper addresses the problem of image representation based on a sparse decomposition over a learned dictionary. We propose an improved matching pursuit algorithm for Multiple Measurement Vectors (MMV) and an adaptive algorithm for dictionary learning based on multi-Singular Value Decomposition (SVD), and combine them for image representation. Compared with the traditional K-SVD and orthogon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013